A linear time algorithm for approximate 2-means clustering
نویسندگان
چکیده
منابع مشابه
A linear time algorithm for approximate 2-means clustering
Matousek [Discrete Comput. Geom. 24 (1) (2000) 61–84] designed an O(nlogn) deterministic algorithm for the approximate 2-means clustering problem for points in fixed dimensional Euclidean space which had left open the possibility of a linear time algorithm. In this paper, we present a simple randomized algorithm to determine an approximate 2-means clustering of a given set of points in fixed di...
متن کاملA Fuzzy C-means Algorithm for Clustering Fuzzy Data and Its Application in Clustering Incomplete Data
The fuzzy c-means clustering algorithm is a useful tool for clustering; but it is convenient only for crisp complete data. In this article, an enhancement of the algorithm is proposed which is suitable for clustering trapezoidal fuzzy data. A linear ranking function is used to define a distance for trapezoidal fuzzy data. Then, as an application, a method based on the proposed algorithm is pres...
متن کاملA Hybrid Time Series Clustering Method Based on Fuzzy C-Means Algorithm: An Agreement Based Clustering Approach
In recent years, the advancement of information gathering technologies such as GPS and GSM networks have led to huge complex datasets such as time series and trajectories. As a result it is essential to use appropriate methods to analyze the produced large raw datasets. Extracting useful information from large data sets has always been one of the most important challenges in different sciences,...
متن کاملOPTIMIZATION OF FUZZY CLUSTERING CRITERIA BY A HYBRID PSO AND FUZZY C-MEANS CLUSTERING ALGORITHM
This paper presents an efficient hybrid method, namely fuzzy particleswarm optimization (FPSO) and fuzzy c-means (FCM) algorithms, to solve the fuzzyclustering problem, especially for large sizes. When the problem becomes large, theFCM algorithm may result in uneven distribution of data, making it difficult to findan optimal solution in reasonable amount of time. The PSO algorithm does find ago...
متن کاملA Simple Linear Time (1+έ)-Approximation Algorithm for k-Means Clustering in Any Dimensions
We present the first linear time (1+ε)-approximation algorithm for the k-means problem for fixed k and ε. Our algorithm runs in O(nd) time, which is linear in the size of the input. Another feature of our algorithm is its simplicity – the only technique involved is random sampling.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Geometry
سال: 2005
ISSN: 0925-7721
DOI: 10.1016/j.comgeo.2005.01.003