A linear time algorithm for approximate 2-means clustering

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A linear time algorithm for approximate 2-means clustering

Matousek [Discrete Comput. Geom. 24 (1) (2000) 61–84] designed an O(nlogn) deterministic algorithm for the approximate 2-means clustering problem for points in fixed dimensional Euclidean space which had left open the possibility of a linear time algorithm. In this paper, we present a simple randomized algorithm to determine an approximate 2-means clustering of a given set of points in fixed di...

متن کامل

A Fuzzy C-means Algorithm for Clustering Fuzzy Data and Its Application in Clustering Incomplete Data

The fuzzy c-means clustering algorithm is a useful tool for clustering; but it is convenient only for crisp complete data. In this article, an enhancement of the algorithm is proposed which is suitable for clustering trapezoidal fuzzy data. A linear ranking function is used to define a distance for trapezoidal fuzzy data. Then, as an application, a method based on the proposed algorithm is pres...

متن کامل

A Hybrid Time Series Clustering Method Based on Fuzzy C-Means Algorithm: An Agreement Based Clustering Approach

In recent years, the advancement of information gathering technologies such as GPS and GSM networks have led to huge complex datasets such as time series and trajectories. As a result it is essential to use appropriate methods to analyze the produced large raw datasets. Extracting useful information from large data sets has always been one of the most important challenges in different sciences,...

متن کامل

OPTIMIZATION OF FUZZY CLUSTERING CRITERIA BY A HYBRID PSO AND FUZZY C-MEANS CLUSTERING ALGORITHM

This paper presents an efficient hybrid method, namely fuzzy particleswarm optimization (FPSO) and fuzzy c-means (FCM) algorithms, to solve the fuzzyclustering problem, especially for large sizes. When the problem becomes large, theFCM algorithm may result in uneven distribution of data, making it difficult to findan optimal solution in reasonable amount of time. The PSO algorithm does find ago...

متن کامل

A Simple Linear Time (1+έ)-Approximation Algorithm for k-Means Clustering in Any Dimensions

We present the first linear time (1+ε)-approximation algorithm for the k-means problem for fixed k and ε. Our algorithm runs in O(nd) time, which is linear in the size of the input. Another feature of our algorithm is its simplicity – the only technique involved is random sampling.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computational Geometry

سال: 2005

ISSN: 0925-7721

DOI: 10.1016/j.comgeo.2005.01.003